The tangent function in terms of the sine function can be written as, tan θ = sin θ/(√1 – sin 2 θ) We know that, tan θ = sin θ/cos θ. From the Pythagorean identities, we have, sin 2 θ + cos 2 θ = 1. cos 2 θ = 1 – sin 2 θ. cos θ = √(1 – sin 2 θ) Hence, tan θ = sin θ/(√1 – sin 2 θ) Tangent Function in Terms of the
Sine and Cosine of Complementary Angles. Recall that the sine and cosine of angles are ratios of pairs of sides in right triangles.. The sine of an angle in a right triangle is the ratio of the side opposite the angle to the hypotenuse.
. 465 335 32 65 282 162 33 486
what is cos tan sin